Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease
نویسندگان
چکیده
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is an adaptive immune system in bacteria and archaea that has recently been exploited for genome engineering. Mutant mice can be generated in one step through direct delivery of the CRISPR/Cas9 components into a mouse zygote. Although the technology is robust, delivery remains a bottleneck, as it involves manual injection of the components into the pronuclei or the cytoplasm of mouse zygotes, which is technically demanding and inherently low throughput. To overcome this limitation, we employed electroporation as a means to deliver the CRISPR/Cas9 components, including Cas9 messenger RNA, single-guide RNA, and donor oligonucleotide, into mouse zygotes and recovered live mice with targeted nonhomologous end joining and homology-directed repair mutations with high efficiency. Our results demonstrate that mice carrying CRISPR/Cas9-mediated targeted mutations can be obtained with high efficiency by zygote electroporation.
منابع مشابه
Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing
Recent use of the CRISPR/Cas9 system has dramatically reduced the time required to produce mutant mice, but the involvement of a time-consuming microinjection step still hampers its application for high-throughput genetic analysis. Here we developed a simple, highly efficient, and large-scale genome editing method, in which the RNAs for the CRISPR/Cas9 system are electroporated into zygotes rat...
متن کاملProduction of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes
BACKGROUND Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing permits the rapid production of genetically engineered mice. To make the most of this innovative technology, a streamlined procedure is needed for the robust construction of CRISPR/Cas9 vectors, the efficient preparation of mouse oocytes, and refined genotypi...
متن کاملSomatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs
The domestic pig is an ideal "dual purpose" animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuabl...
متن کاملEnhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System
The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targe...
متن کاملEfficient generation of FVII gene knockout mice using CRISPR/Cas9 nuclease and truncated guided RNAs
We investigated the effects of 5'-end truncated CRISPR RNA-guided Cas9 nuclease (tru-RGN, 17/18 nucleotides) on genome editing capability in NIH/3T3 cells, and its efficiencies on generating Factor VII (FVII) gene-knockout (KO) mice. In cultured cells, RGNs on-target editing activity had been varied when gRNAs was truncated, higher at Site Two (tF7-2 vs. F7-2, 49.5 vs. 30.1%) while lower in oth...
متن کامل